AQA

A-LEVEL PHYSICS A

PHYA2 - mechanics, materials and waves
Mark scheme

2450
June 2014

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

[^0]COMPONENT NAME: Unit 2 - Mechanics, materials and waves

COMPONENT NUMBER: PHYA2

Question	Part	Sub Part	Marking Guidance	Mark		Comments

1	a		$\begin{aligned} & 8300 \times 9.81 \text { OR }=81423 \checkmark \\ & (8300 \times 9.81 \sin 25) \\ & =3.4 \times 10^{4}(\mathrm{~N}) \checkmark(34411 \mathrm{~N}) \text { ecf from first line unless } \mathrm{g} \text { not used } \end{aligned}$ msin25 gets zero	2		Penalize use of $\mathrm{g}=10$ here only (35077 N) Allow 9.8 in any question Correct answer only, gets both marks for all two mark questions

| 1 | b | i | $\left(E_{\mathrm{k}}=1 / 2 m v^{2}\right)$
 $=1 / 2 \times 8300 \times 56^{2} \checkmark$
 $=1.3 \times 10^{7}(J) \checkmark(13014400)$ allow use of 8300 only | 2 | In general:
 Penalise
 transcription
 errors and
 rounding errors
 in answers |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1	b	ii	```mgh = KE (13 014 400) for mgh allow GPE or E E OR 13014400 / 81 423\checkmark h=160(m)}\checkmark(159.8) ecf 1b```	2	Allow use of suvat approach
1	c	i	(work done) by friction \backslash drag \backslash air resistance \backslash resistive forces \checkmark (Energy converted) to internal \backslash thermal energy	2	Allow 'heat'
1	c	ii	$\begin{aligned} & 0.87 \times(8300 \times 9.81 \times 140=9917000) \text { OR } v=\sqrt{\left[\frac{2 \times(9917000)}{8300}\right]} \\ & =49\left(=48.88 \mathrm{~ms}^{-1}\right)^{\checkmark} \end{aligned}$	2	87\% of energy for 140 m or 160m only for first mark. Use of 160 (52.26) and/or incorrect or no \% (52.4) gets max 1 provided working is shown. Do not credit suvat approaches here.
			Total	10	

\(\left.\begin{array}{|l|l|l|l|l|l|l|}\hline 2 \& \mathrm{a} \& \mathrm{i} \& \begin{array}{l}Use of \quad\left(s=\frac{1}{2} g t^{2}\right) \quad OR \quad t^{2}=2 s / g \quad \checkmark

\mathrm{t}=\sqrt{ } \frac{2 \times 1.2}{9.81} \quad \checkmark

=0.49(0.4946 \mathrm{~s})

\end{array} \& \checkmark allow 0.5 do not allow 0.50\end{array}\right]\)| Some working
 required for full
 marks. Correct
 answer only
 gets 2 |
| :--- |

| 2 | a | ii | $(s=v t)$
 $=8.5 \times 0.4946 \checkmark$ ecf ai
 $=4.2 \mathrm{~m} \checkmark(4.20)$ ecf from ai | 2 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 2 | b | i | $\left(\begin{array}{l}\left.s=\frac{1}{2}(u+v) t\right) \\ t=\frac{2 s}{u(+v)} \text { or correct sub into equation above } \checkmark \\ =\frac{2 \times 0.35}{8.5}=8.2 \times 10^{-2} \\ \end{array}\right.$
 $(\mathrm{s}) \checkmark(0.0824)$ allow 0.08 but not 0.080 or 0.1 | Allow
 alternative
 correct
 approaches |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 2 | b ii | $a=(v-u) / t$ OR correct substitution OR a=103
 $\left.(=-8.5) / 8.24 \times 10^{-2}=103.2\right)$
 $(F=m a=) 75 \times(103.2) \checkmark$ ecf from bi for incorrect acceleration due to
 arithmetic error only, not a physics error (e.g. do not allow a = 8.5. Use of g
 gets zero for the question.
 $=7700 \mathrm{~N} \checkmark$ (7741) ecf (see above) | Or from loss of
 KE
 Some working
 required for full
 marks. Correct
 answer only
 gets 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |

3	a	i	$\begin{aligned} & m=W / g) \\ & \left(3.4 \times 10^{4} / 9.81=\right) 3500(3466 \mathrm{~kg}) \end{aligned}$	1	Allow use of $\mathrm{g}=10$
3	a	ii	$\begin{aligned} & (\text { moment }=34000 \times 5.0)=1.7 \times 10^{5} \checkmark(\mathrm{Nm}) \\ & \underline{\mathrm{Nm} \quad \checkmark \text { do not allow } \mathrm{NM} \backslash \mathrm{nM} \text { etc }} . \end{aligned}$	2	allow in words
3	a	iii	$\begin{aligned} & 170000=\mathrm{T} \times \underline{12} \quad \text { OR } \quad \mathrm{T}=170000 / \underline{12} \checkmark \text { ecf aii } \\ & =1.4(167) \times 10^{4} \checkmark(\mathrm{~N}) \end{aligned}$	2	

3	a	iv	```(Component of T perpendicular to lever) = T cos 24 OR 14167 x 0.9135 OR 12942(N)\checkmark ecf aiii allow 2.5cos24 x T (12942) x 2.5 = F x 8.0 OR F=((12942) x 2.5)/ 8.0 \checkmark ecf for incorrect component of T or T on its own F=4000(N)\checkmark (4044) ecf ecf for incorrect component of T or T on its own \\ allow 4100 for use of 14200 (4054)```	3		Some working required for full marks. Correct answer only gets 2. Failure to find component of T is max $2(4400$ N)
			total	8		

		touching scale \set square(for parallax reduction) \Vernier scale (not Vernier calipers)* - Monitor diameter change during experiment *These points may appear in a clear and suitably labelled diagram A four mark answer will have good QWC OR will exceed the specification above and will have at least one of the 5 points from the Accuracy list.			
$1 / 2$	Limited	Low Level (Poor to limited): 1 or 2 marks The information conveyed by the answer is poorly organised and may not be relevant or coherent. There is little correct use of specialist vocabulary. The form and style of writing may be only partly appropriate. Two valid points from the list For two marks, at least 3 points are required	1/2		
		Marking points: - Diagram (not necessarily labelled) showing a workable arrangement of suitable apparatus - measure diameter of wires - use a micrometer (for the diameter)* - apply range of loads or masses - measure original length - measure or calculate extension		6 marks	

4	b	i	brittle \checkmark allow misspellings allow: britle, brittleness,	1	

4	b	ii	stress A B For stress- strain: Straight line labelled ' A ' with greater gradient than other line and starting close to origin $\checkmark \quad$ allow small curve in correct direction at end of line. Line labelled ' B ' with significant curve and decreasing gradient which may then undulate \checkmark (forgive one label to be missing)	3		Allow full credit if strain plotted against stress correctly Allow reasonable free hand straight line. Tolerance for curve of A: no more than 10% of the total change in strain for their line.

| 4 | c | i | $($ strain $=\Delta L / L)$ strain $=0.24 / 100(=0.0024)$
 OR correct calculation of extension (0.0036) \checkmark
 $($ stress $=E \times$ strain $)$
 stress $=2.80\left(\times 10^{11}\right) \times 0.0024 \quad \checkmark$ ecf from first mark
 $=6.7 \times 10^{8}(\mathrm{~Pa}) \checkmark$ ecf from first mark | Some working
 required for full
 marks. Correct
 answer only
 gets 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 4 | c | ii | $\left(A=\pi(D / 2)^{2}\right)$ | 3 | Some working
 required for full |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5	a	i	$\begin{array}{\|l} \hline \sin 60=1.47 \sin \theta \quad \text { OR } \quad \sin \theta=\sin 60 / 1.47 \quad \checkmark \\ \left(\sin ^{-1} 0.5891\right)=36\left({ }^{\circ}\right) \checkmark\left(36.0955^{\circ}\right) \text { (allow 36.2) } \end{array}$	2	Allow 36.0
5	a	ii	$\frac{\sin \theta_{c}=1.33 / 1.47}{\left(\sin ^{-1}\right.} \frac{\text { OR }}{0.9048)=65\left({ }^{\circ}\right)} \frac{\sin \theta_{c}}{\checkmark}=0.9(048)$	2	Allow 64 for use of 0.9 and 66 for use of 0.91
5	a	iii	Answer consistent with previous answers, e.g. If aii >ai: Ray refracts at the boundary AND goes to the right of the normal Angle of refraction $>$ angle of incidence \checkmark this mark depends on the first If aii < ai: TIR \checkmark Angle of reflection $=$ angle of incidence \checkmark Ignore the path of the ray beyond water/glass boundary	2	Approx. equal angles (continuation of the line must touch 'Figure 4' label)
5	b		For Reason or Explanation: The angle of refraction should be > angle of incidence when entering the water \checkmark water has a lower refractive index than glass \backslash light is faster in water than in glass \checkmark TIR could not happen \there is no critical angle, when ray travels from	4	Allow 'ray doesn't bend towards normal' (at glass/water) Allow optical

| | | | water to oil\checkmark
 TIR only occurs when ray travels from higher to lower refractive index \backslash
 water has a lower refractive index than oil \checkmark | | density
 Boundary in
 question must
 be clearly
 implied |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| |
| :--- | :--- | :--- | :--- | :--- | :--- |

6	a		One of: (spectral) analysis of light from stars (analyse) composition of stars Chemical analysis Measuring red shift \backslash rotation of stars Insufficient answers: 'observe spectra', 'spectroscopy', 'view absorption \emission spectrum', 'compare spectra', 'look at light from stars'.	1	Allow : measuring wavelength or frequency from a named source of light. Allow any other legitimate application that specifies the source of light. E.g. absorbtionlemission spectra in stars, 'observe spectra of materials'
6	b	1	first order beam first order spectrum first order image	1	Allow ' $n=1$ ', ' 1 ' 'one', $1^{\text {st }}$
6	b	ii	The light at A will appear white (and at B there will be a spectrum) OR greater intensity at A	1	
6	C		$\begin{aligned} & \left(d=1 /\left(\text { lines per } \mathrm{mm} \times 10^{3}\right)\right. \\ & =6.757 \times 10^{-7}(\mathrm{~m}) \text { OR } 6.757 \times 10^{-4}(\mathrm{~mm}) \end{aligned}$	3	Some working required for full marks. Correct

| | | OR $\sin ^{-1}(2 \times$ (their $\lambda /$ their d$\left.)\right) \quad \checkmark$
 $($ not possible to calculate $)$ so no more beams \checkmark ecf | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

			total		8	
7	a	number of (complete) waves (passing a point) in 1 second OR number of waves / time (for the waves to pass a point) OR (complete number of) oscillations \ vibrations per second OR $1 / T$ with T defined as time for 1 (complete) oscillation \checkmark	Allow: Cycles Allow: unit time			

7	b		For two marks: Oscillation of particles \backslash medium \backslash material etc, but not oscillation of wave is parallel to \backslash in same direction as the direction wave (travels) For one mark: Particles\materiallmedium move(s) \mid disturbance \backslash displacement Parallel to \backslash in same direction as the direction wave travels OR (oscillations) parallel to direction of wave travel The one mark answer with: Mention of compressions and rarefactions	2	Allow Vibration Allow direction of energy transfer \backslash wave propagation

		OR (Longitudinal waves) cannot be polarised Gets two marks		
7	C	$\begin{aligned} & \left(f=1540 / 0.50 \times 10^{-3}\right) \\ & =3100000(\mathrm{~Hz}) \checkmark(3080000) \end{aligned}$ $2 s f \quad \checkmark$	2	
7	d	No more than two points from either list (max 3): Description - Mention of nodes and antinodes - Particles not moving at a node - Maximum displacement at antinode - Particles either side of node in antiphase / between two nodes in phase - Variation of amplitude between nodes Explanation - A stationary wave (forms) - two waves are of equal frequency or wavelength (and amplitude in the same medium) - reflected and transmitted waves \ waves travelling in opposite directions, pass through each other - superpose / interfere occurs - constructive interference at antinodes - destructive interference at nodes	3	Allow 'standing wave’

[^0]: Copyright © 2014 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

